On some generalizations of the diophantine equation $1^k + 2^k + ... + x^k = y^z$

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A computational approach for solving y2 =1k + 2k + ... + xk

We present a computational approach for finding all integral solutions of the equation y2 = 1k + 2k + · · ·+xk for even values of k. By reducing this problem to that of finding integral solutions of a certain class of quartic equations closely related to the Pell equations, we are able to apply the powerful computational machinery related to quadratic number fields. Using our approach, we deter...

متن کامل

THE DIOPHANTINE EQUATION x2+2k =yn, II

New results regarding the full solution of the diophantine equationx2+2k=yn in positive integers are obtained. These support a previous conjecture, without providing a complete proof.

متن کامل

On Webster’s horn equation and some generalizations

Sound waves along a rigid axisymmetric tube with a variable cross-section are considered. The governing Helmholtz equation is solved using power-series expansions in a stretched radial coordinate, leading to a hierarchy of one-dimensional ordinary differential equations in the longitudinal direction. The lowest approximation for axisymmetric motion turns out to be Webster’s horn equation. Fourt...

متن کامل

On the Diophantine Equation

In this paper, we study the Diophantine equation x2 + C = 2yn in positive integers x, y with gcd(x, y) = 1, where n ≥ 3 and C is a positive integer. If C ≡ 1 (mod 4) we give a very sharp bound for prime values of the exponent n; our main tool here is the result on existence of primitive divisors in Lehmer sequence due Bilu, Hanrot and Voutier. When C 6≡ 1 (mod 4) we explain how the equation can...

متن کامل

On the Diophantine Equation

= c for some integers a, b, c with ab 6= 0, has only finitely many integer solutions. Stoll & Tichy proved more generally that if a, b, c ∈ Q and ab 6= 0, then for m > n ≥ 3, the above equation has only finitely many integral solutions x, y. Independently, Rakaczki established a more precise finiteness result on this binomial equation and extended this result to more general equations (see Acta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Arithmetica

سال: 1984

ISSN: 0065-1036,1730-6264

DOI: 10.4064/aa-44-2-99-107